
Presented by Long Cheng
10/06/2015

Appeared in MICRO’96 Conference
Proceedings

Background

• Profiling:	analysis	of	program	behavior	based	
on	run-time	data

• Profiler:	conceptual	module	whose	purpose	is	
to	collect	or	analyze	runtime	data

• Profile:	a	set	of	frequencies	associated	with	
run-time	events

• Static	analysis	Vs.	Dynamic	analysis	
– Programs	behaviors	are	hard	to	understand	statically

– Dynamic	analysis	based	on	runtime	data	is	needed

Path	Profiling

• How	often	does	a	control	flow	path	execute?	
– Before	this,	basic	block	and	control	flow	edge	

profiling	were	used.	Path	profiling	was	assumed	
to	be	much	more	costly
• Blocks	 statements	&	lines

• Edges	 branches	&	blocks

• Paths sequence	of	edges	&	blocks

• Why	path	profiling	is	needed?
– Edge	profiling	does	not	identify	the	most	frequently	

executed	paths	(and	no	cheaper)

Path	Profile	Usage

• Debugging	and	bug-isolation

• Feedback	based	optimization

– Concentrate/favor	frequently	executed	paths

• Performance	tuning

– Hardware	metrics	along	path

• Software	coverage	testing

• Characterize	program	execution,	
understanding	program/architecture	
interaction

Efficient	Path	Profiling

• This	paper	describes	an	efficient	path	
profiling	algorithm
– Simple

– Fast

– Minimized	run-time	overhead

• Efficient	edge	profiling	:	average	overhead	16%

• Efficient	path	profiling	:	average	overhead	31%

• Accurate	path	profiling	overhead	is	only	twice	as	
compared	to	efficient	edge	profiling

Outline

• Path	profiling	of	directed	acyclic	graphs	
(DAGs)

• Arbitrary	control-flow	graphs

• Experimental	results

Path	Profiling	of	DAGs

• Basic	Idea

– Paths	are	identified	by	unique	integer	(path	
identifier)

– This	integer	is	used	to	index	an	array	of	counter

Path	Profiling	of	DAGs

• Pre-execution

–Assign	edge	values

–Minimize	edge	increments

–Place	instrumentation	

• Execution	

–Record	path	profile

• Post-execution
– Associate	path	with	number	(Path	Regenerating)

Path	Profiling	of	DAGs

• Terminology	

–Control-flow	graphs	(CFGs)	have	been	
converted	into	directed	acyclic	graphs	(DAG)	
with	a	unique	source	vertex	ENTRY	and	sink	
vertex	EXIT
• Basic	algorithm	assumes	that	control	flow	graph	is	DAG

• Later	show	how	to	transform	an	arbitrary	CFG	into	a	DAG

Path	Profiling	of	DAGs

• First	Step---Edge	Assignment

– Assign	a	non-negative	constant	value	Val(e)	to	
each	edge	e	in	a	DAG

Any vertex with a single outgoing edge e,
such as C and E, always has Val(e) = 0

Path identifier is a sum of edge
values through the path

Path	Profiling	of	DAGs

• Second	Step---Edge	Selection	for	Efficiently	
Computing	Sums

Many	ways	to	compute	sums

• Uses	the	Event	Counting	Algorithm	in	the	paper
Thomas	Ball.	“Efficiently	counting	program	events	with	support	for	on-
line	queries”,	ACM	Transactions	on	Programming	Languages	and	
Systems,	Sep	1994

Find	minimum	operations	
to	compute	sums	?

Path	Profiling	of	DAGs

• Second	Step--- Event	Counting	Algorithm
– Path	identifier	is	preserved

• Ensure	that	the	sum	of	Incrementing	values	for	any	path	P	from	
ENTRY	to	EXIT	is	identical	to	the	sum	of	Val(e)	values	for	P

– Transition	events	in	the	paths	are	reduced
• Weigh	edges	by	execution	frequency

• Instruments	the	least	traveled	edges

– Example:	
• Transition	number	changes	

from	3	to	2	in	the	path	(ABDEF)	

Path	Profiling	of	DAGs

• Third	Step---Inserting	Instrumentation
– Basic	

• Initialize:	r	=0																at	ENTRY

• Increment:	r+=Inc(c)		along	chord	c	

• Record:	count[r]++						at	EXIT

• Postlude:	Array is written out to permanent storage

– Optimization		(reduce	memory	access)
• Initialize	&	Increment:	r=Inc(c)

• Increment	&	Record:	count[r+ Inc(c)]++	

Path	Profiling	of	DAGs

• Third	Step---Inserting	Instrumentation

Basic	

r = 0

r += 2

r += 4

r += 1

table[r] ++

Optimization

Path	Profiling	of	DAGs

• Path	Generation
– Given	information

• R	=	path	identifier

• v	=	current	block	(initialized	to	entry	block)

• e	=	outgoing	edge	from	the	vertex	v	to	w

• Val(e)	=	edge	value	of	the	edge	e

– At	each	block,	find	e	(v→w)	,	which		is	
outgoing	edge	of	v	with	the	largest	Val(e)	≤	R.

Example: path register is 4
– Regenerated path is ABDF

A

B C

D

E F

2

1

2

R=0

Arbitrary	Control-Flow	Graphs

• Transforming	general	CFG	to	DAG
– Control	flow	graphs	generally	contain	cycles

– Approach:	Break	cycles	at	loop	backedge

– Instrument	each	backedge with	[count[r]++;	r=0],	
which	records	the	path	upto the	backedge and	prepares	
to	record	the	path	after	the	backedge.

Arbitrary	Control-Flow	Graphs

• If	there	is	a	backedge (E	→	B)
– Insert	dummy	edge	(ENTRY→	B)

– Insert	dummy	edge	(E	→	EXIT)

– Remove	the	backedge (E→B)	(Eliminate	all	backedges except	
EXIT	to	ENTRY)

– Apply	the	first	two	steps	of	Path	Profiling	Algorithm	(Edge	
value	assignment	and	chord	increment)

Arbitrary	Control-Flow	Graphs

• Dealing	with	Self	Loops
– Self	loops	are	backedges with	same	source	and	target	

vertex

– Approach:	Add	a	counter	along	them	to	record	the	
number	of	times	they	execute

Experimental	results

Path	profiling	overhead	- 30.9%	 (5.5	to	96.9%)
Edge	profiling	overhead	- 16.1%	 (-2.6	to	52.8%)

PP	:	path	profiling

QPT	:	edge	profiling

Overhead	is	the	increase	in	execution	
time	due	to	profiling

Experimental	results

The	fraction	of	paths	predicted	entirely	
correctly	by	edge	profiling

Acknowledgement

• http://drona.csa.iisc.ernet.in/~muralikrishna/t
eaching/spring2014/Papers2014/Ball_Larus_P
resentation.pdf

• http://pages.cs.wisc.edu/~larus/Talks/path_tal
k/sld001.htm

• https://cse.sc.edu/~mgv/csce531sp10/present
ations/531Sethia2010.ppt

Thanks

